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Parallel Computation with
the Force®

Harry F. Jordan
Department of Electrical and Computer Fngineering
University of Colorado

Abstract

A methodology, called the force, supports the construction of programs to be
executed in parallel by a force of processes. The number of processes in the
force is unspecified, but potentially very large. The [urce idea is embodied in
a set of macros which produce multiprocessor Fortran code and has been stu-
died on two shared memory multiprocessors of fairiy different character. The
method has simplified the writing of highly parallel programs within a limited
class of parallel algorithms and is being extended to cover a broader class.
This paper deals with the individual parallel constructs which comprise the
force methodology. Of central concern are their semantics, implementation
on different architectures and performance implications.

*Research was supported in part by NASA Contract No. NAS1-17070 and by the Air Force Office of
Scientific Research under Grant No. AFOSR 854889 while the author was in residence at ICASE, NASA
Langley Research Center, Hampton, VA 23685, 018'9'




DOALL. In either case, the hody of the DOALL is executed once for each
index value by some one of the processes. The choice of prescheduling or
self-scheduling may impact performance as a result of uneven workload divi-
sion or of conflict on access to the global index variable.

The programming language associated with the force consists of some
simple extensions to the Fortran language, which are currently implemented
as macros which are expanded by a language independent preprocessor. The
target Fortran system must, of course, include ways of creating multiple
processes and of supporting synchronized access to global variables. A
currently operational set of macros produces Fortran for the HEP computer
(3]. built by Denelcor, Inc., and a set is being constructed for the Flex/32 [4],
built by Flexible Computer Corporation. The macros interact through the
variables of a parallel environment, which contains some general information
such as the number of processes and some machine dependent items.

Parallelism Constructs of the Force

The macros currently constituting the force can be divided into several
classes, as shown in Fig. 1. The first class deals with parallel program struc-
ture. The macros Force and Forcesub respectively begin parallel main pro-
grams and parallel subrouiines. They make the parallel environment vari-
ables available to the macros within that program module as well as making
the number of processes and a unique identifier for the current process avail-
able to the user at run time. An End Declarations macro marks the beginning
of executable code and provides target locations for declarations and start up
code which may be generated by the macros. A Join macro terminates the
parallel main program. It is the last statement executed bv all processes of
the force.

Macros of the second class deal with variable declarat: - This class
currently includes only Global and Local macros. Global variables are associ-
ated with Fortran common while local variables are ordinary Fortran vari-
ables local to a separately compiled program module. Sharing of local vari-
ahles among several program modules, but local to one process, can only be
accomplished by parameter passing. The static allocation flavor of Fortran
makes it difficult to build a structure of common variables with one instance
for each process when the number of processes is not known until execution
oe,

Macros of another class distribute work across processes. The most fami-
liar construct is the DOALL, which is employed when instances of a loop
body for different index values are independent and can thus be executed in
any order. Two versions are provided. The Presched DO divides index values
among processe~ in a fixed manner which depends only on the index range
and the number of processes. The Selfsched DO allows processes to schedule
themselves over index values by obtaining the next available value of a
shared index as they become free to do work. For situations in which it is
desirable to parallelize over both indices of a doubly nested loop, both
prescheduled, Pre2DO, and self scheduled, Self2DO, macros are available.
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Conceptual Basis for the Force

The force {1] methodology for parallel programming arose in trying to
produce high performance parallel programs in a shared-memory multiproces-
sor running up to 200 processes on the same user program [2]. Multiprogram-
ming was not an issue, and all emphasis was on single problem solution speed.
Partly for performance measurement purposes and partly for program
manageability, a programming style emerged in which a single piece of code
was written which could be executed by a force of processes in parallel. The
number of processes constituting the force is constant during execution but is
bound as late as the beginning of execution, and may be one.

The force technique insulates the programmer from all process manage-
ment and leaves him the issues involving process synchronization. Since
processes are established by a program independent driver at the beginning
of execution time, parallelism is introduced at the top of the procedure
hierarchy. This has the effect of insulating the user from parallelism issues
with results similar to those obtained by encapsulating parallelism below a
particular level in the procedure hierarchy. The study of techniques for using
the force in a program is essentially a study of synchronization mechanisms
which are independent of the number and identities of the processes syn-
chronized. '

Several advantages arise out of independence from the number of
processes. [t is not necessary to design algorithms with a detailed depen-
dence on the, potentially very large, number of processes executing them.
The choice of the optimal number of processes can be made at run time on
the basis of system hardware configuration and load. Since complete
independence from the number of processes implies correct execution with
only one process, the issues of arithmestic correctness and multi-process syn-
chronization can be separated in the testing of a program.

Statements written in a force program are implicitly executed by all
processes in parallel. Variables appearing in statements are divided into local
variables, having separate instances for each process, and global variables,
shared among all processes of the force. An assignment statement, for exam-
ple. may combine the values of global and local variables to produce a local or
global result. If the result is local, no assignment conflict is possible. If it is
global, then assignment conflict must be prevented. either by allocation of
disjoint sections of a global data structure to multiple processes or by syn-
chronizing the assignment across processes, say by enclosing it in a critical
section or by using producer/consumer synchronization on the variable
assigned. Library or user subroutines which are either free of side effects or
carefully synchronized can be invoked in parallel, one copy for each process.

One way in which disjoint sections of a global data structure, specifically
an array, may be allocated to multiple processes is to schedule distinct index
values in a2 DOALL across processes. Index values may either be assigned
statically to processes once the number of processes is known, in which case
we speak of a prescheduled DOALL, or processes may dynamically schedule

themselves by obtaining distinct values of a global index variable as they
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Macros associated with program structure:
Force <name> of <# procs> ident <proc #>
< declarations>
End declarations
< force program>
Join

Forcesub <name> of <#procs> ident <proc #>
< declarations>

End header
<subroutine body>

RETURN

Forcecall <name>(<parameters>)

Declaration macros:
Global < variable names>
Local < Fortran declaration>

Macros specifying parallel execution:
Pcase on <variable>
< code block>
Usect
< code block>

End pcase

[PrefSelfjsched DO <n> <var>= <il>, <i2>, <i3>

< loop body>
<n> End [prekelf|sched DO

Synchronizing macros:
Barrier
< code block>
End barrier

Critical $<variable>
< code block> -,
End critical :

Produce <variable> = <expression> (producer)
... = ... Usel<variable> ... (consumer)

Figure 1: Specific Macros for a Force Program

Independence of the loop body instances over both indices is, of course,
required for correct operation. A similar construct is the parallel case, Pcase,
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which distributes different single stream code blocks over the processes of the
force. Execution conditions can be associated with each block, and any
number of these conditions may be true simultaneously. No order of evalua-
tion of the conditions is specified, and each will be evaluated by one arbi-
trarily selected process. Thus condition; depending only on global variables
are most meaningful.

At the heart of the force methodology are the synchronization macros.
They characterize the approach to parallel programming and provide the
means for controlling the force so that coherent and deterministic computa-
tion can be performed. Two subclasses of synchronization are control flow
oriented synchronizations and data oriented synchronizations. The key con-
trol oriented synchronization is the barrier since it provides control of the
entire force. Its semantics are that all processes must execute a Barrier
macro before one arbitrarily chosen process executes the code block between s
Barrier and End Barrier. When the code block is complete, the entire force
begins execution at the statement following the End Barrier. Although all
but one process are temporarily suspended by a barrier, no process termina-
tion or creation takes place and all local process states are preserved across
the barrier. Operations which depend on the past computation, or determine
the future progress, of the entire force are typically enclosed in a barrier.

Another control based synchronization is the critical section, familiar [
from the operating systems literature. Statements  between ‘
Critical <variable> and End Critical may only be executed by one process of
the force at a time. This mutual exclusion extends to any other critical sec-
tion with the same associated variable. Data oriented synchronization is pro- *
vided by the elementary producer-consumer mechanism, in which global vari-
ables have a binary state, full or empty, as well as a value. Execution by
some process of the macro, Produce <variable> = <erpression>, waits for
the variable to be in the empty state, sets its value to.that of the expression
and makes it full, all in a manner which is atomic with respect to the progress
of any other process. Similarly, the macro, Use(<variable > ), appeariag in an
expression returns the value of the variable when it becomes full and sets it
empty. Variables in the wrong state may cause these macros to block the
progress of a process. Auxiliary macros for full/empty variables are
Purge <variable>, which sets a variable empty regardless of its previous
state, and Copy(<wvariable>), which waits for the variable to be full and
returns its value but does not empty it.

A major weakness in the current set of force macros is that it does not
smoothly support decomposition of a program into parallel components on
the basis of functionality. The Pcase macro offers the rudiments of this, but
only allows one process to execute each of the parallel functions. What is
desired is a macro, Resolve, which will resolve the force into components exe-
cuting different parallel code sections. The section of code for each com-
ponent would start with Component <name> strength <number>, which
would name the component and specify the fraction of the force to be
devoted to this component. The component strengths wonld be estimated by
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computational complexity of each component. A macro, Unify, would reunite
the components into a single force. The implementation of Resolve is compli-
cated by the conflicting demands of generality and efficiency. If the number
of components is larger than the number of processes in the force, then
inter-component synchronization may deadlock unless the components are
co-scheduled over the available processes. An implementation which pro-
duces process rescheduling at every possible deadlock point and is still
efficient when the number of processes exceeds the number of components is
under development.

Incorporation of a Resolve macro would make it useful to extend the bar-
rier idea. A barrier should be able to specify whether only the processes in
the current component are to be blocked or whether all processes in the
parent force are to participate. In the case of recursively nested Resolve con-
structs, the barrier might specify a nesting level relative to the one in which
it appears.

The Resolve idea promises a mechanism for functional decomposition of
programs into parallel components, but there is one more capability of paral-
lel programming environments with explicit process management which is not
addressed by the force. This is the ability to give away work to "available”
processes in a dynamic manner during execution. This ability is most called
for by tree algorithms and dynamic divide-and-conquer methods. It would be
desirable for the force to contain a mechanism for efficiently handling such
algorithms without making the user responsible for explicit process manage-
ment or losing the benefits of independence of the number of processes. A
mechanism related to resolve might be applied at each tree node but could
lead to much process management overhead in cases where the correct thing
to do is merely to traverse a subtree with the one remaining process.

Interrelationships Between the Primitives

The semantics of the parallelism constructs in the force imply certain
restrictions on the way they are used together in a program. Several of the
constructs restrict execution to a single stream within some code block. Bar-
rier and Pcase limit execution of enclosed blocks to a single process while crit-
ical section code is eventually executed by all processes, but only one at a
time. Thus constructs which depend on multiple, simultaneous execution,
such as DOALL, Pcase or Barrier should not appear within such blocks. A
critical section within a Barrier is meaningless, but critical sections have
definite use within two or more code blocks of a Pcase construct. Nested crit-
ical sections have meaning when the associated locking variables are different.
Data oriented synchronization primitives may occur within singly executed
code without restriction, other than t"» natural possibility of deadlock. In
fact, initialization of full/empty variables is usually done within a singly exe-
cuted block.

Parallel loops do not restrict the execution of their bodies to a single pro-
cess, but they do limit execution of the body for each index value to one pro-
cess. Thus constructs which depend on full parallel execution cannot appear




within DOALLs. These include Barrier, Pcase and other DOALLs. The
inconsistency in the parallelism requirements of nested DOALLs is the reason
for supplying multiple index DOALLs for parallel execution of loop bodies
which are independent over the Cartesian product of two or more index sets.
Critical sections, Produce and Use are quite useful within DOALLs and often
lead to programs in which the distributed nature of synchronization reduces
its effect on program performance.

Subroutine invocation within a force program can be done either with a
Forcecall or an ordinary Fortran CALL. Only the Forcecall makes the paral-
lel environment available to the subroutine called. Since a force subroutine
invoked by Forcecall assumes that all processes of the force will enter it, a
Forcecall must not appear within a code body in which parallel execution has
been restricted. Thus, Forcecalls are not meaningful within Barrier, Pcase,
Critical or DOALL constructs. An ordinary CALL implies execution of a sub-
routine in single stream on behalf of one or more processes. Since any For-
tran based parallel system must support multiple independent execution of
subroutines, such as those in the mathematical library, subroutines must
have separate local variable states for all processes executing them. An ordi-
nary Fortran subroutine or function call may thus appear within any code
section of a force program. The subroutines or functions so invoked contain
no parallel constructs and access by them to any shared variables must be
controlled externally if it is desired.

The Resolve construct is intended to produce a new parallel execution
environment within each of its components, differing from the original only in
the number of processes. Thus all of the parallelism primitives have meaning
within a force component. The implementations of the primitives must, of
course, refer to the parallel environment of the component rather than of the
original force. The meaning of Barrier, as has been noted, can be extended to
refer to higher levels of a nested component structure, but it retains its origi-
nal meaning with respect to the immediate component with no modification
of its semantics. Barrier, Pcase and the DOALLs have an action limited to
the component in which they appear. Critical sections and data oriented
synchronizations can synchronize operations within the current component
with operations in any other components which share the corresponding vari-
ables.

Performance Issues

Various features of the force methodology are related to the performance
of a parallel computer system. An overall principle used in selection of primi-
tive operations for inclusion in the force was that the semantics of each prim-
itive should be simple enough to admit of an efficient implementation across
the range of shared memory multiprocessors. The simple process model, con-
sisting of program counter, local variables and unique identifying index, also
contributes to low overhead implementation on most shared memory
machines. Process priorities and parent-child relationships, for example, can
significantly complicate the implementation of a parallel programming




svstem on some multiprocessors which do not directly support such features.

The primitive operations of the force define a virtual machine, and the
generality of this machine yields independence from the details of the under-
Ilving hardware. This benefit of machine independence and portability need
not. however, suppress all machine performance issues at the level of force
programming. Pratt [5] points out that a virtual machine for parallel execu-
tion should make "visible,” as programming alternatives, distinctions which
may reflect major hardware performance differences. The clearest example of
such alternatives within the force is the existence of both a prescheduled and
a self-scheduled DOALL.

At the level of the abstract machine, the process interactions implied by
pre- and self- scheduling are different. Prescheduling, since it allocates index
values to processes in a fixed way as soon as the number of processes is deter-
mined, will split the workload evenly across processes only if processors run
at similar speeds and the amount of computation specified by the DOALL
body is independent of index value. Cn the other hand, no process interac-
tion is required to allocate the index values; each process can determine its
own portion of the work independently. In contrast, the self-scheduling tech-
nique allows processes to load balance at execution time by obtaining further
index values whenever they complete the work connected with previous
values. This is done at the expense of a short critical section to obtain, incre-
ment and store a shared index variable.

For a given underlying hardware, these distinctions at the abstract
machine level can be translated into performance differences by using a few
general characteristics of the hardware system. The most important parame-
ters for the pre- versus self- scheduling comparison are the size, in execution
time, of a minimal critical section to access and update a shared index and
the number of processes competing for this access. When combined with the
program dependent parameters of the n.ean aud standard deviation of the
DOALL body size over the set of index values, they allow a determination of
which type of scheduling will lead to better performance.

Implementation Issues

Implementation issues can be addressed on the basis of variations in the
two current implementations. Several hardware differences between the HEP
and the Flex/32 multiprocessors influence implementation of the force mac-
ros. A minor, but basic level, difference is that all memory in the HEP can be
shared by all processes so only Fortran variable scope issues are involved in
implementing global variables. In the Flex/32, only a restricted portion of
the address space is accessible by processes running on different processors so
shared variables must physically reside in these addresses as well as satisfying
Fortran conventions for name sharing by different modules. The shared
address space on the Flex/32 is large enough and its access time near enough
to that of local memory that this should not be an issue except for programs
with very large global data requirements.




The basic synchronization mechanism in HEP is the locking full/empty
bit in each memory cell. Locks in the Flex/32 are separate and, although
there are 8192 of them, they form a scarcer resource than HEP synchroniza-
tion elements. Furthermore, since the HEP has hardware to support the tem-
porary suspension of processes, the user can do synchronizations directly
while the manipulation of locks in the Flex/32 must be done through the
operating syvstem. Figure 2 shows critical sections for both machines and
notes the user instruction versus system call distinction. The Flex/32 Con-
Current C system supports the association of a lock with any shared variable
to which synchronized access ic made, so at this level the machine differences
are not major, as far as implementation of the force macros is concerned. As
shown in Fig. 2, the critical section macro has an associated variable to allow
for distinct sets of interacting critical sections. In both implementations this
becomes a global variable which is locked (directly in the HEP and via system
call in the Flex/32) on entry to and unlocked on exit from the critical section.

The Produce and U'se macros are quite different on the two systems sim-
ply vecause they correspond directly to single memory access instructions on
the HEP and must involve the locks on the Flex/32. Implementation of

HEP
Critical lock1 call awrite(lockl, .true.)
< code block> <code block>
Eand Critical call laread(lock1)
Flex/32
Critical lockl call CClock(1l, "lock1")
< code block> < code block>
End Critical call CCunlck(1, "lock1")
Single instruction HEP Flex/32 operating
Fortran intrinsics system calls
awrite wait for empty, CClock wait for unlocked
write, set full and lock
laread wait for full, read, CCunlck unlock
set empty (logical)

Figure 2: Implementation of Critical Sections




Produce and Use for fewer than 8192 variables might be done using the
hardware locks on the Flex/32, but full/empty access to individual elements
of a large array requires a software supported association of variables with
full/empty bits. Synchronized access to the bits and their associated vari-
ables needs to employ a combination of the locks and events supported by
the hardware.

Implementation of the Barrier macro shows some clear differences
between the two systems. In both cases, the semantics requiring all processes
to arrive before the code section is executed is supported by a shared counter
svnchronized as in the critical section. Two barrier mechanisms have been
used on the HEP. In systems small enough that meniory contention is not a
problem, the last process to increment the shared counter executes the code
section and i:lls a memory locatio:: which the other processes are attempting
to read. Prc ‘esses must then count down the counter as they exit the bar-
rier, with the last one resetting the lock. If memory contention is a problem,
the ability to control processes at the user level allows writing of a HEP
assembly lanzuage routine in which all but the last process to enter a barrier
terminate exccution to be recreated with their previous state by the last pro-
cess to enter the barrier. In the Flex/32, process control is a system function.
The system. however, supports the concept of shared events, connected to
processes in a broadcast configuration. Here, processes entering the barrier
wait on the ovent, except for the last one, which executes the code block of
the barrier :ind then activates the event. Verifying that each process con-
nected to the event has seen it is part of the operating system support, so no
exit code is required. The first mechanism for the HEP is contrasted with the
Flex/32 impl ‘mentation in Fig. 3.

Conclusions

The design of a parallel programming system involves a combination of
the issues of utility with those of implementation efficiency. The utility
issues have been treated in previous papers [1] [6] while this work concen-
trates on the individual macro semantics and implementation issues. The
force methodology supports efficient implementation by the simplicity of its
process model and lack of complex semantics in individual parallel ~on-
structs. At least two multiprocessors with shared memory admit of straight-
forward implementations.
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HEP

Barrier

< code block >

End Barrier

Flex/32

Barrier

< code blo-k>

End Barrier

HEP singl» instruct.or ir.rinsics |

if {lwaitf(ilock)) continue
nloc = iaread(nbar) + 1
call awrite(nbar, nloc)

if (nloc .eq. np) then

< code block>

call sete(ilock)

call awrite(olock, .true.)
endif
if (lwaitf(olock)) continue
nloc = iaread(nbar)- 1
call iawrite(nbar, nloc)
if (nloc .eq. np) then

call sete(olock)

call awrite(ilock, .true.)
endif

call CClock(1l, "nbar")
nloc = nbar + 1

nbar = nloc
call CCunlck(1, "nbar")
if (nloc .eq. np) then

< code block>
call CCactev(l, 4, "bar")
else

call CCwev(1, 4, "bar")
endif

Flex/32 operating system calls

waitf - vait for full, read

aread - wait full, read, set empty
awrite - wait empty, write, set full
sete - <ot empty

Figure 3: Imj lementation of Barriers

CClock - wait free, set lock
CCunlck - clear lock
CCactev - activate event
CCwev - wait for event




(3]

(4]
[5]

(6]
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